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ABSTRACT CDA
The Heisenberg exchange Hamiltonian has been solved exactly for a cubic array
of eight spins (each with spin 1/2). Both energy eigenvalues and thermodynamic
functions have been calculated. A Curie and a Néel temperature can be defined
and their values determined as a function of the strength of first, second and
third neighbor interactions. For some values of the exchange constents, ““spiral”’
antiferromagnetic states exist.
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FERRO- AND ANTIFERROMAGNETISM
IN A CUBIC CLUSTER OF SPINS

I. INTRODUCTION

The exact three-dimensional solution of the Heisenberg model for ferromagnetism is not
tractable for an infinite lattice. There are various approximate solutions, some of which in-

volve the exact solution for some small cluster of spi.ns.1‘2 In addition, a number of solutions
exist in the literature for a small number of spins in various configurations.3 This report gives

the exact solution to the Heisenberg Hamiltonian for eight spins, each with spin 1/2, located on

the corners of a cube. Both the eigenvalues and the thermodynamic functions have been calculated.

This simple cluster shows many of the features of an infinite magnetic material. In partic-
ular, a ferromagnetic Curie temperature TC and zn antiferromagnetic Néel temperature TN can
be defined, and their valuei computed as a function of the strength of second and third neighbor
interactions. It is shown that, for some values of the interactions, "spiral" antiferromagnetic
states exist.4 It is also shown that there are regions in which, as the temperature is lowered,
ferromagnetic ordering begins, but at still lower temperatures, the system drops into the anti-
ferromagnetic singlet state.

The approximate solution to the infinite simple cubic lattice, using the results contained
herein, will be published in a subsequent report.

II. CALCULATION
The Heisenberg Hamiltonian is written
¥ = —2J[e + xp + yv] (1)

in which J is the exchange constant, x and y are proportional to the strength of next nearest
and third nearest neighbor interactions, and

€=8,5,+485,-8,+85,-8,+8,- 5, +8,- 5, +5, - §,+5,-§,+5, -5,
+'S'1-'§5+§2 §6+§3 S, +8, §8 .

p=§1'§3+§2'§4+§5'§7+§6'§8+§1 §6+§2-§7+§3 §8+§4-§5
+§1'§8+§2'§5+§3'§6+§4'§7 s

”=§1'§7+§2'§8+§3'§5+§4'§6 . (2)
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Fig. 1. Cube showing the numbering of the spins.
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Fig. 2. Energy spectrum assuming only nearest neighbor interactions,
x =y =0. The spectrum is arranged according to the value of the total
spin. The Néel state energy is indicated even though it is not a proper
eigenstate of the system.
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h site gi follows the numbering of the sites shown in Fig. 1.

The spin operator for the it
The eigenfunctions of Eq. (1) can be classified according to the total spin S, the z-component
of the total spin MS' and the irreducible representation og the cubic group. Table I lists the sym-
metry types and energy eigenvalues for the cubic cluster.” Appendix A tabulates the wave func-
tions. Appendix Bgives the matrix elements of € + xp + yv for the wave functions of Appendix A.
The notation for the representations is such that a vector transforms as I‘;. The spectrum for
x =y = 0 is shown in Fig. 2.
For a given value of the total spin S, the center of gravity of the energy levels ECG is given
by the sum rule

Ecg * _z[z Ty (568 + 1) - (3/4) NJ/[N(N — 1)] (3)
i<j

in which N is the number of spins (each with spin 1/2) and Ji' is the exchange constant between
sites i and j. Equation (3) represents a convenient check of the calculated energy eigenvalues,
The Heisenberg approximation for ferromagnetism™ corresponds to calculating the partition func-
tion, using Eq. (3) for the energy eigenvalues,

The partition function for the cubic cluster is calculated by using the eigenfunctions listed
in Table I. From the partition function, the susceptibility and heat capacity for the system are
calculated. The susceptibility x given by the Curie law is written as

2 2
9z}

x = NS(S + 1) 3KT (4)
in which N is the number of spins, S is the spin quantum number g = 2 and kB is the Bohr mag-
neton, The cubic cluster obeys the Curie law with suitable identification of N and S. For high
temperatures, 2J/kT << 1, the necessary interpretation of N and S is

NS(S+1) =6 ,

and at low temperatures, 2J/kT >> 1, the interpretation is changed to N = 1 with
NS(S+1) =20 J>0

and
NS(S+1) =0 J<o

A plot of the susceptibility vs 1/T for x = y = 0 is shown in Fig. 3 for both the ferromagnetic and
antiferromagnetic states. For convenience, the plot is presented in dimensionless form in terms
of ax vs 2J/kT, with a = 6J/g2p]§. For the ferromagnetic case (J > 0) the slope of the curve in
Fig. 3(a) has the two asymptotic values indicated by the dashed lines. The ferromagnetic Curie
temperature TC is defined as the position of maximum slope of the x vs 1/T curve. The anti-
ferromagnetic Néel temperature TN is defined as the position of the maximum in the suscepti-
bility curve. With these definitions, the Curie and Néel temperatures have béen determined as
a function of x and y. These results are shown in Fig. 4.

The heat capacity is shown for the same parameters in Fig. 5. The positions of TC and TN'
as determined from the susceptibility, are also indicated. The maximum of the heat capacity
curves differs somewhat from TC and TN, as determined from the susceptibility.



TABLE |

SPIN, SYMMETRY TYPE AND ENERGY EIGENVALUES
FOR THE CUBIC CLUSTER OF EIGHT SPINS

Spin Representation Eigenvalue (A = E/(-2J))
4 r] AN=3+3x+y
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+
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A= 30=x % 510 - 024 41— 22
+
T3
ry
A=£[(1=02+ (1= 2= (1= (1= yn"/2
r+
5
]
A=—(1=x) % [0 =22+ (1= )2 = 301 =x) (1 = y)]"/2
; +
: r
: ]
! r5 )\'-"l—x
1“; =14+ x
r; A=0




i o "t S i e A i e < =

e e e b e i e A 3 S e e, obein e

TABLE | (Continued)

SPIN, SYMMETRY TYPE AND ENERGY EIGENVALUES
FOR THE CUBIC CLUSTER OF EIGHT SPINS

Spin Representation Eigenvalue (A = E/(~2J))

- >\3+2Az(l+ +y)+ M=2+7x+5y+3 2)
I‘4 xTy - X+ oy + 3xy - x
- 2+ 2+ 4+ by -2 =0
4
Ty
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+
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+
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I3
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r+
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I‘; A==3x
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Ts
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Fig.4. Tcand T\ vs x with y asa
parameter.” The upper curves refer to
J > 0 and the lower curves to J < 0.
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1. DISCUSSION

The calculation of the magnetic properxrties for an 8-spin cuk
esting features. The antiferromagnetic state gives a good appr:
netic state of the infinite solid. The susceptibility and heat cap:
high-temperature limits as the infinite lattice. For x =y = 0, t
determined from the susceptibility of the 8 -spin cluster is given
with the Bethe, Peierls, Weiss value of 2_01 (see Ref. 1). The fe
hand, is not well represented by the sSrirmnall cluster. The heat ca)
high-temperature limits, but the susceptibility has the correct 1:
temperature case (paramagnetic region). In addition, the Curie
given by kTC/J = 0.90 compared withh thhe Bethe, Peierlas, Weiss

In order to investigate the numbex of spins required to repr:
of an infinite solid, the Heisenberg approximation (i.e., assume
carried out for clusters of 8, 64 and 216 spins. The results for
Fig.6. The Curie temperature for these clusters was found fror
the results are shown in Table II. A rather slow convergence is
netic cagse. To put it another way, 216 spins are too few to repr
lattice. The results for the cluster show that fewer spins are ne
magnetic state than the ferromagnetic state. Comparison with til
not useful for the antiferromagnetic case. The Heisenberg apprc
antiferromagnetic state which get woxrse as IN increases; that is

1.0

-

Fig. 6. Heat capacity for
Heisenberg approximation
216 spins.
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TABLE Il
VALUES OF Tc CALCULATED
IN THE HEISENBERG APPROXIMATION
FOR CUBIC CLUSTERS OF VARIOUS NUMBERS OF SPINS

N KT/
8 1.3
64 1.8
216 2.2
© 3.0

Another interesting feature of the 8-spin cubic cluster is the existence of an antiferromag-
netic state for J > 0. For example, for y = 0 and x < —1/3, an antiferromagnetic state exists
with J > 0, which corresponds to a "classical" spiral state;4 that is, nearest neighbors are
mostly parallel to take advantage of positive J and next nearest neighbors are mostly antipar-
allel. An examination of the susceptibility curve in the region y = 0 and x < —1/3 shows that the
system begins to order ferromagnetically because of the greater weighting factor for the S = 4
state, but at low temperatures, the system becomes antiferromagnetic because an S = 0, I‘I
state is lower in energy.7 The condition on x and y for the accidental degeneracy of the S = 4,

I‘+

4 State and an S =0, I‘I state is given by

2 2 2 2 _
3(1 + 4xo + 3xo) + 7yo + 12x0yo + Zyo + 3x°y° + Zxc)yo =0 (5)

In Fig. 4, the dashed branch of the y = 0 curve indicates this possibility of a "high" temperature
ferromagnetic state. The y = £0.3 calculations also allow this possibility but, for simplicity,
these branches are not plotted in Fig. 4.

It is also possible to select values of the parameters x and y so thatan S =0, I‘; state is
the lowest antiferromagnetic state of the system for J < 0. The classical analog to this situation
is discussed in Ref. 4.
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APPENDIX A
EIGENFUNCTIONS OF THE 8-SPIN PROBLEM

The notation is as follows:
spin configuration (137) = B(1) «(2) B(3) a(4) a(5) a(6) B(7) a(8)

in which a(i) —~ spin "i" up and B(i) = spin "i" down. Only the maximum MS state is listed, since
the lower MS states can be obtained by application of a lowering operator. For the representa-
tions I‘;, only one eigenfunction is given; the other can be obtained by taking the complex con-
jugate of the given function. For I‘: and I‘:, only one function is given; the other two can be
obtained by performing the appropriate symmetry operations. When the same representation
occurs several times, a lower case Greek letter is used to distinguish the representation. An
"i" ig used to label the state in the case of a multidimensional representation.

The states are eigenstates of SZ and Sz, but not necessarily of ¥. The wave function is a
sum of the spin configurations. The coefficient of each spin configuration is givenin Table A-I.

The absolute value of the square of the wave function is the last entry in the table.

TABLE A-I
NUMERICAL COEFFICIENTS
OF THE VARIOUS SPIN CONFIGURATIONS
$=3
Spin Configuration 2 T Iy
)] + - -
2 - + -
3 + + +
(4 - - +
©) - - +
(6) + + +
] - + _
(®) + - -
;2 8 8 8

11



TABLE A-I (Continued)

NUMERICAL COEFFICIENTS
OF THE VARIOUS SPIN CONFIGURATIONS

[

§=2

Confipuration | T1° | T8 | Tgui | T | T3 | T | xR | x| T3
(12) + + 1 + +
(23) + + @ + -
(34) + + } + +
(14) + + w + -
(56) + + 1 - _
(67) + + W - +
(78) + + 1 - _
(58) + + ® - +
(15 + + vl + +
(26) + + o2 - -
(37) + + u2 + +
(48) + + w? - -
7 -6 -2
(28) -6 +2
(35) -6 -2
(46) -6 +2

12
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TABLE A-l (Continued)

NUMERICAL COEFFICIENTS
OF THE VARIOUS SPIN CONFIGURATIONS

S$=2
Configuration | T | T8 | Tt | T3 | T3 | Ty | T | i |
(13) - + 1 1 -2 - +
(24) - + 1 -1 -2 + -
(57) - + 1 -1 2 - +
(68) - + 1 1 2 + -
(22) - + w? | =u?
(36) _ + 02 °2
(18) - + w2 w?
(45) - + w2 | —u?
(38) - + W w
(47) - + © -
(25) - + © -
(16) - + w w
T2 24 168 12 12 12 24 8 24 24
where w3 = 1.

13



TABLE A-! (Continued)
NUMERICAL COEFFICIENTS

OF THE VARIOUS SPIN CONFIGURATIONS

[ . ey g~ on

-

§S=1

Confisgpt::"oﬁon I‘Eu I‘;ﬂ r:-ii I‘;a o I‘:p, i P;a i I‘;B, i 1';7, i I‘;a o r;ﬁr i I‘gi
(123 + | - - | -2 -3 - -
(134) + | - 1 - | =2 -3| - -
(568) + | - 1 + 12 | /3 + +
(678) + - 1 + 1/2 1/3 + +
(236) + - | -w + + 1/6 + +
(126) + - | +e?| - + 1/6 + -
(367) + - | -w - - ~1/6 - -
(348) + | - W2 - + 1/6 + -
(378) + - o+ - -1/6 - +
(158) + - - - - - 1/6 - -
(156) TR IR S B - |- -
(148) + - | —w + + 1/6 +
(234) - |+ [ - | =v2=v3] + +
(124) - |+ |- - | =2 |-13]| + +
(267) - + @ + -1/6 + -
(145) - + w - + /6 - +
(256) = v - - -1/6 + +
(347) - |+ [ -e?] o+ + 1/6 - -
(578) - |+ |1 + V2 | V3| - -
(567) - |+ |1 + V2| V3| - -
(125) - + | =e2] + /6 - -
(479) - + | -e?| - - -1/6 + +
(237) -+ e - + 1/6 - +
(458) - + w + - -1/6 + -
(136) 2 + -
(138) 2 + -
(168) 2 - - +
(368) 2 - - +
(247) -2 + - +
(257) -2 - + -
(245) -2 + - +
(457) -2 - + -

14
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TABLE A-

I (Continued)

NUMERICAL COEFFICIENTS
OF THE VARIOUS SPIN CONFIGURATIONS

E R ISP UEPREE

S=1

Contoaion | 52 | T8 | 75 | Tt | 5 [T [ [ [P [T |
(127) + + | -0 + -1/2 /6 - +
(345) + + | =u -1/2 1/6 - +
(456) + + | —w - - 1/2 | =1/6 + -
(278) v |+ | -0 - - /2 | =1/6 + -
(235) T R - + =2 | e - -
(246) + + 1 + /2 | -2/3 -2
(467) + w2 + - v2 | -1/ + +
(248) + ! + /2 | -2/3 -2
(147) + o+ | W2 - + =2 | e - -
(157) + |+ 10 - | -2 23 2
(258) w? + - /2 | -1/6 + +
(357) 1 - =12 23 2
(238) - - |- + + ~-1/2 /6 + -
(146) -] - | -d? + v =12 Ve + -
(268) - - 1= - |=wv2| 3 -2
(135) S I + /2 | -2/3 2
(356) -] - @ + - V2 | -1/6 - -
(346) S R - + 212 Ve +
(128) - - w - + -1/2 1/6 + +
(468) S B - |=12| 3 -2
(358) - = | =u? _ - 2 | =1/ - +
(178) - -] e + - /2 | =1/6 - -
(167) S (R - - V2 | -1/6 - +
(137) - | = | = + /2 | -2/3 2
|12 48 (80| 48| 16 16 | 32 24 | 143 16 | 80 | 32
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TABLE A-l (Continued)
NUMERICAL COEFFICIENTS

OF THE VARIOUS SPIN CONFIGURATIONS

$=0

Spin
Configuration

- + ., +, . +, R
) Taui | Tghii | Tgi | Ty

o]
-—
~
]

(1234)
(5678)
(1256)
(3478)
(2367)
(145¢)

(2347)
(1348)
(1245)
(123¢)
(3678)
(4578)
(1568)
(2567)

(13¢68)
(2457)

(1279)
(3456)
(1467)
(2358)
(1357)
(24¢8)

[« ] W W O W [ wWw Wl lw W wWw W W W wWw Wwliw W W Ww w W
S
+

®
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TABLE A-! (Continued)
NUMERICAL COEFFICIENTS

OF THE VARIOUS SPIN CONFIGURATIONS

$=0

Confisgjnraﬁon 1‘-;0 I";B I‘TY I‘;u 2 I‘;B, ! I‘gi I‘;i
(2345) - -2 o? W?
(134¢6) - -2 4.»2 02
(1247) - -2 o? o?
(1238) - -2 o? w2
(1678) - -2 w2 o?
(2578) - -2 o2 w2
(3568) - -2 o2 w2
(4567) - -2 o2 w2
(1378) - -2 © o -
(2478) - -2 w o -
(3457) - -2 w @ +
(3448) - -2 w w +
(1356) - -2 o w -
(2456) - -2 " o -
(1257) - -2 “ o +
(1268) - -2 o o N
(1367) - -2 1 1 - +
(2467) - -2 1 1 + +
(2357) - -2 1 1 + -
(2368) - -2 1 1 - -
(2458) - -2 1 1 - +
(1358) - -2 ! 1 + +
(1468) - -2 1 1 + -
(1457) - -2 1 1 - -

17




OF THE VARIOUS SPIN CONFIGURATIONS

TABLE A=l (Continued)
NUMERICAL COEFFICIENTS

$=0

Confimtion | To@ | TP [ Ty | Ty | Tai | ri | Th | Ty
(1237) + -2 + - ©
(2348) + -2 + -1 1 +
(1345) + -2 + -0 ©
(1246) + -2 + -1 1 -
(2678) + -2 + - o
(4568) + -2 + —-w m
(3447) + -2 + - 02 -
(2356) + -2 + —a o2 +
(3578) + -2 + -1 1 -
(1567) + -2 + -1 ! +
(1478) + -2 + —w w2 +
(1258) + -2 + - o2 -
(1235) + -2 - -1 1 -
(234¢6) + -2 - -w @
(1347) + -2 - -1 1 +
(1248) + =2 - -0 ©
(1267) + -2 - -t w2 -
(2568) + -2 - -1 1 +
(1456) + -2 - —u? w? +
(1578) + -2 - ~0 @
(3458) + -2 - —02 02 -
(3567) + ~2 - —u o
(4678) + -2 - -1 1 -
(2378) + -2 - ~o? w2 +
Ir; |2 16 72 720 24 72 72 24 24

18




APPENDIX B
MATRIX ELEMENTS

In this appendix the matrix elements of the form (I‘i| € + xp + yv|I.) are given. The non-

R e ot ket A A 1 T AR s a1 me e

degenerate states can be obtained directly from Table I, so only the matrix elements for degen-

erate states are listed.
ForS=2

r,o r,s
+ 3,5 NT
ra -Zt3x-y T(i—x)
+ NT 1
r,s -5 (1 -x -z (L+x)+y
I‘;a,i I‘;a,ii I‘;/S,i I‘;B,ii
I‘;a,i {4 — x) 0 0 —w(i—y)
- s 2
1‘301,11 0 (1 —x) -w{1-y) 0
38,1 0 —w(i—y) 0 0
- s 2
I‘3B,11 -w (1 —y) v 0 0
+ . +, .
rga,i re.i
+ 1 N3
I‘sa,l f(1+x)—y T(i—y)
+, . N3 1

19



ForS=1

T R R B e et s e e o . e e ki e

I‘4a,1

1"4B,i

I‘4y,1

ro,i T 8,1 Ty, i
1 A 1 /5
-3 (1 + 14x + y) e (14 — 6x — 5y) 4J;(1—y)
1 _ 1 5NE
Ve (11 —- 6x — 5y) 34 (7 — 30x — 25y) 12 (1 -y
1 5 505 4
1 [Ea-y 2oy |4 13sex—sy
+ . .
I‘4a,1 I‘ZB,l
3 1
T
1 3
—E(i-x) -3 Wt+x)+y
I L8
i 3 15
~i-x-3y | - u-y
15 15 5
- -y -3 t3x-7v¥
+ +
I‘Sa,1 1‘513,1
3,14 N5
——2—+2X—1 T(i—x)
\/—Zg—(i—x) ——;—(1+x)+y

20
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For S=0

—_2 — 23 + v

]
”~~
| " "
_ |
Q| I ] «
4+ - + ~
H 3& " niN
_
_ _
®
|
+ai z ©
~ a.v.., ~
_ 3__V
|
+M1 +”4. +MI.4.

© em m e e e - ——————

B
—(1 — x)
—2 —2x + ¥y

- > )
+S _ _
s
| |
oot o=l
+a3 + ™
e ~

B T P T

B A A
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